

Pulmonary Arterial Pressure

- Two options for use in a selection program:
- Phenotype
 - · Historically this is what has been done
- Genetic Prediction
 - Relatively recent innovation → Breed wide
- What should be used for selection decisions?

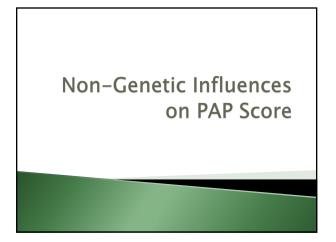
Why do animals perform the way they do?

Why should we select animals on the basis of their EPD and not phenotype.

Quantifying Phenotype

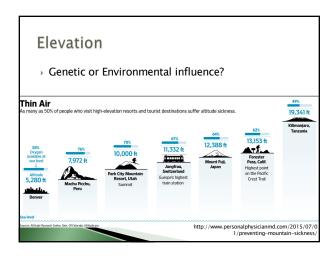
$$P = BV + E$$

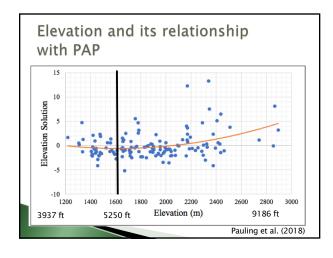
- ightharpoonup Phenotype = Genetics + Environment
- P = Performance of an individual animal for a trait
- BV = Breeding value of the individual for a given trait
- E = Environmental effect on the individual's performance.

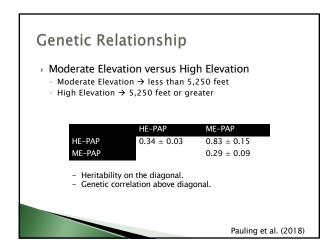

Heritability quantifies the relationship between BV and Phenotype

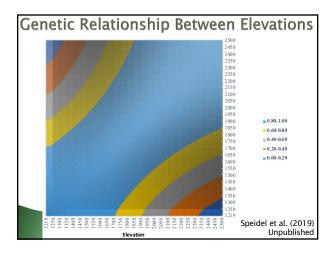
$$P = BV + E$$

$$h^2 = \frac{\sigma_{BV}^2}{\sigma_P^2} = 0.34 \sim 0.46$$

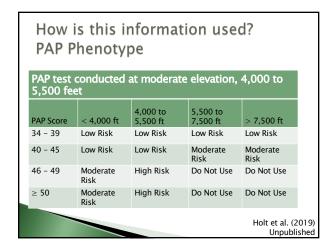

- We know there is variability in performance.
- We know individuals are not genetically identical
 - (therefore we have variability in breeding value)


54% to 66% of the differences observed in PAP score are due to environmental influences.




Non-Genetic Influences on PAP Age ~ 18 months ideal Parasite load Contemporary Group Ration % Concentrate Body Condition Ionophores Fat thickness Respiratory Disease Elevation Any lung damage PAP increases ~ 1 to 1.5 mmHG / 1000 feet ▶ Sex Technician ~33% of individuals will Weather increase more Hybrid Vigor

Contemporary Group Genetic Evaluation methodology compares individuals within a contemporary group Defined Yearling management, Yearling Date, PAP date, Elevation, Ranch, Disease Status, etc. Range of PAP observations 31 mmHg to 149 mmHg




How is this information used?

 Phenotypic PAP is dependent on elevation at which it was measured.

How is this information used?

- Phenotypic PAP is dependent on elevation at which it was measured.
- Low elevation PAP can be used as an "indicator" of high elevation EPD or EBV
- Multiple trait model
 - $\,^\circ\,$ Similar to the relationship between carcass and ultrasound
 - Genetic relationship dependent upon the distance in elevation between measurements.

How should selection decisions be made....

- Association-wide EPDs for PAP soon to be released.
- Decisions need to be made that are dependent on how the animals are to be used.
- Essentially 2 different paths
 - Sire new calves via artificial insemination
 - · Semen purchased through AI companies
 - · Sires purchased and moved to elevation OR
 - · Sires born and raised at elevation

Sires used via AI with semen purchased

- ▶ Remember \rightarrow P = BV + E
- Use published EPD
- EPD is a prediction of the genetic merit ("transmittable") of an individual
- Significant effort is made to reduce environmental variability that is not transmitted from parent to offspring.
- EPD will rank individual animals according to their value as a parent.

Potential sires residing at elevation

- ▶ Remember \rightarrow P = BV + E
- Environmental influences on phenotype are not passed on to offspring.
- > They do contribute to the individual's phenotype
- To improve chances of survival at elevation:
 Individual phenotype cannot be ignored
- For selection to become parents, individuals should be selected based on their EPD

Recommendations

- At elevation
- · Need acceptable PAP EPD AND
- Need acceptable PAP observation
- ▶ EPD
 - $^{\circ}$ Positive EPD ightarrow caution with use
- $^{\circ}$ Zero or below \rightarrow Good
- $^{\circ}$ Less than –0.70 \rightarrow Will improve problems

