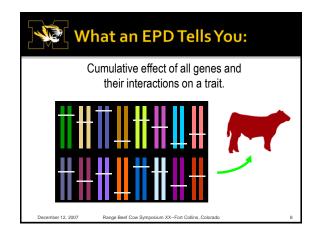
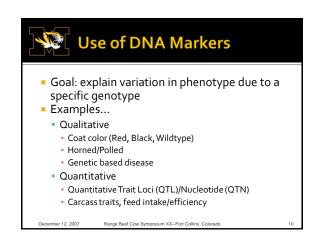

What is a DNA marker?


- Any of a number of different types of sequences of nucleotides that allow identification of alternate forms of a gene (allele). (marker = ear tag)
- Some changes in sequence cause change in gene function (causal)
- Other changes just help identify gene (noncoding) (association)

Range Beef Cow Symposium XX--Fort Collins, Colorad


nber 12, 2007

G Marker Assisted

ar 12 2007

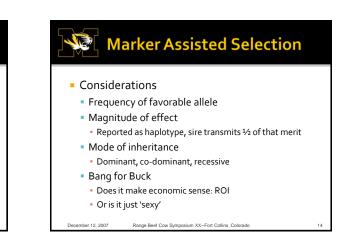
Selection: Process of using DNA-marker test results to predict the genetic merit to aid in selection of animals as parents.

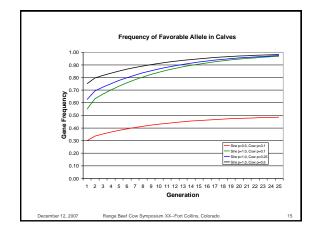
Management: Process of using DNA-marker test results to predict the phenotype of the animal and provision of specific management environments to achieve specific end-points.
 Marketing: Using DNA marker information to merchandize bulls.

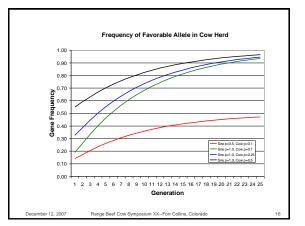
Range Beef Cow Symposium XX--Fort Collins, Colorado

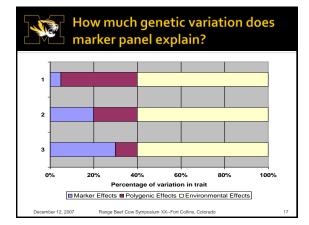
Traits that are most likely to benefit from MAS (descending order)

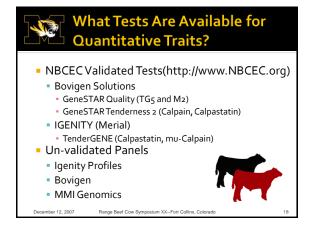
Van Eenennaam, 2007

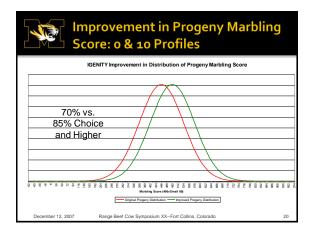

- Simply inherited genetic defects
- Carcass quality and palatability attributes
- Fertility and reproductive efficiency
- Maintenance requirements
- Carcass quantity and yield
- Milk production and maternal ability
- Growth performance


So When Are Markers Helpful? Traits that are hard/expensive to measure Disease, reproduction,


- Qualitative traits with economic impact
 Horned/polled, color
- Collectively account for large portion of genetic variation of trait, inexpensive to test
- Results incorporated into NCE programs
 Markers are not a substitute for EPDs
- Very useful for parentage identification and pedigree validation (seedstock)


December 12, 2007


Range Beef Cow Symposium XX--Fort Collins, Colorado



IGENITY Profile (pre-Dec 2007)									
IGENITY Result	Yield Grade	% Choice Based on Quality Grade	Ribeye Area in Square Inches	Hot Carcass Weight Ibs.	Back Fat Thickness in Inches	USDA Marbling Score	Tenderness in Ibs. of WBSF		
10	0.44	44.5	0.95	45.5	0.100	85.3	-2.27		
9	0.39	38.9	0.85	39.8	0.085	76.6	-1.95		
8	0.33	34.3	0.74	34.1	0.070	67.4	-1.85		
7	0.28	30.3	0.68	28.7	0.060	57.9	-1.54		
6	0.23	25.2	0.51	23.3	0.050	48.4	-1.22		
5	0.19	19.9	0.41	21.8	0.040	39.0	-1.13		
4	0.15	14.9	0.27	16.6	0.033	29.6	-0.79		
3	0.11	10.2	0.21	11.4	0.025	20.1	-0.42		
2	0.05	5.6	0.11	5.7	0.013	10.1	-0.21		
1	0	0	0	0	0	0	0		
Phen. SD	0.59		0.65	0.46	0.63	0.88	0.68		
							Data on f		
December 12, 2007 Range Beef Cow Symposium XXFort Collins, Colorado							1		

A Selection Example							
	Bull ID	Marker Result	Marbling EPD/Acc*				
	Α	2 Star					
	В	2 Star					
	С	0 Star					
	D	0 Star					
	*EPDs from Sprin	ig 2004 Am. Simm	ental Assn. MB-ICE				
December 12, 2	007 Range Beef Co	ow Symposium XXFort Collin	s, Colorado	21			

A Selection Example								
	Bull ID	Marker Result	Marbling EPD/Acc*					
	Α	2 Star	+0.37 0.74					
	В	2 Star	-0.22 0.68					
	С	0 Star	+0.28 0.78					
	D	0 Star	-0.37 0.74					
*EPDs from Spring 2004 Am. Simmental Assn. MB-ICE								
December 12, 2007 Range Beef Cow Symposium XXFort Collins, Colorado								

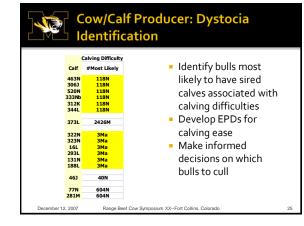
What's the Problem?

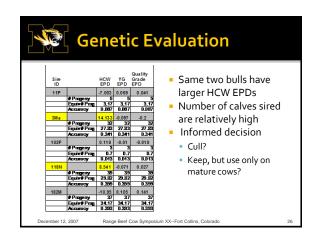
- Marker only accounts for small percentage of genetic variation
 - ~10% of additive variation
- Quantitative traits are polygenic
 - Many genes at play simultaneously
 - Interactions among genes

ber 12, 2007

DNA marker results are not replacements for EPDS!!

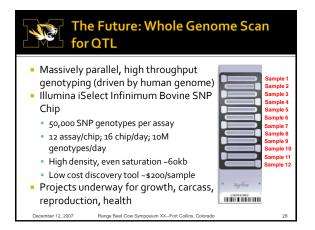
Range Beef Cow Symposium XX--Fort Collins, Colorado


Ge he


Genetic evaluation of commercial herd from DNA derived pedigree

Allows commercial producers to:

- Identify superior and inferior bulls
- Run several sires in pastures to improve reproductive rate and grazing management
- Monitor herd's genetic progress
- Separate herd bull battery into breeding groups to make the most of their genetic assets


mber 12, 2007 Range Beef Cow Symposium XX--Fort Collins, Colorado

Convergence: the future of quantitative and molecular genetics

ີ Convergence

- Large marker panels or whole genome selection system
- Incorporate marker data into EPD calculation

Range Beef Cow Symposium XX--Fort Collins, Colorad

- Am. Simmental uses WBSF markers in computation of EPD
- Improves accuracy for young animals/selection candidates

er 12, 2007

 Reduces need to collect expensive phenotypes 🕅 Take Home Messages...

- EPD provides more information about net merit for a trait than gene marker result (today).
- EPD should continue to be principle genetic tools used for selection of commercial herd sires.
- Parentage testing can be useful in variety of settings
- DNA marker information maybe used by:
- seedstock producers to identify unique gene combinations
 commercial producers in the absence of EPD data.
- Convergence critical for continued growth and success via improved accuracy of EPD early in life

mber 12, 2007 Range Beef Cow Symposium XX--Fort Collins, Colorado

