

Outline

- □ Introduction
- Importance of Reproduction
- Heifer selection/management in U.S.
- Post-Artificial Insemination Management Implications
- Conclusions

Selection

Remember, the only reason to keep a heifer is to improve the quality and profitability of the herd!

Heifers selection

- Select heifers born early in the calving season
 Indicative of dams fertility
- Retain 10 to 15% more heifers than replacement rate requires
 5 to 10% of heifers will fail to consolve
 - \sim 5 to 10% of heifers will fail to conceive
- Do not retain heifers with structural defects

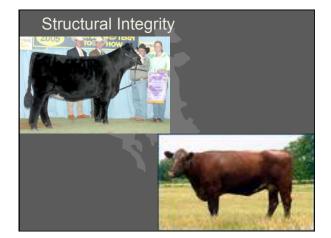
What is important in Heifer selection?

- Maternal traits first and foremost
- □ Fleshing Ability
- □ Body Capacity
- □ Structural integrity
- □ Feminine look
- Muscle shape

Maternal Traits

- Role of the heifer is to become a calf making factory
- Must have maternal instinct
- Good milking ability
 Coupled with correct udder attachment
- Must be reproductively efficient
 If she doesn't breed easily the first year, it's probably not going to get any better

Fleshing Ability


Fleshing Ability

- Fleshing ability is crucial in the Western US where forage is limited
- □ Fleshing ability is directly correlated to BCS
- BCS play an important role in reproductive efficiency and a cows ability to breed annually
- Fleshing ability is also related to mature cow size
 - Your cows should be as big as your environment will allow

Body Capacity

- Remember these heifers are essentially (baby making machines)
- We need rib capacity and depth of body for two major reasons
 - Carry large calves to term
 - Allow maximum room for rumen contents and large amounts of feed to supply nutrients

Structural Integrity

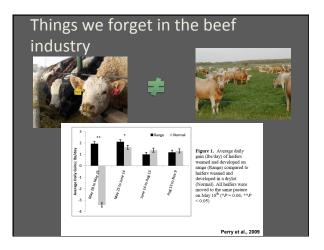
- □ Less than 2% of cows in the US will be culled for structure problems alone.
- □ However, problems arising from structurally unsound cattle lead to large amount of culls after the first calf is born.
 - Low BCS due to lack of mobility
 - Extreme cases include that of a silent heat due to stress of 'standing heat' during ovulation

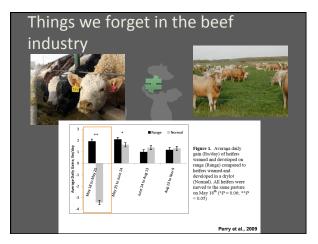
Feminine Look

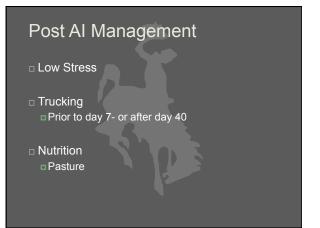
- □ It is important for females to look like females and males to look like males.
- □ Age of sexual maturity in heifers is correlated to scrotal circumference and masculinity of her sire
- Masculinity of bulls is in turn related to the feminine appearance their dam

Reproductive goals for heifers

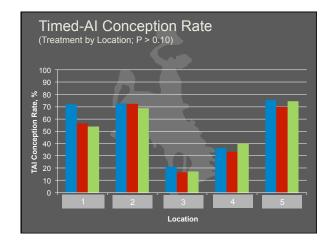
- Reach puberty by 12 to 13 months of age
 Age at puberty influenced by genotype, nutrition, and environment
 - Conception rate after $3^{\rm rd}$ estrus is ~20% greater compared to conception rate at $1^{\rm st}$ estrus
- Conceive by 15 months of age
- Calve by 2 years of age
 Most profitable
- Need minimal assistance calving
 Selection for growth, BW, and pelvic area
- Rebreed as a 2-yr old cow Difficult as cow must partition nutrients into lactation, growth, and reproduction

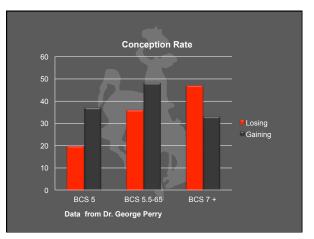

Heifer management strategies


- Most common strategy is feeding heifers to reach a "Target Weight" prior to the breeding season
 - Typical: 65% mature body weight (MBW) = 1200 lb cow * 0.65 = 780 lb at breeding
 - To reduce cost of heifer development some suggest using a target weight of 50 to 55% MBW
 - Similar reproductive performance if the breeding season was extended from 45 to 60 days


Heifer Development

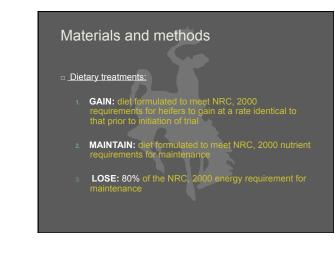
- □ 80% of U.S. herds are Spring calving (USDA, 2010)
- Dry-lot, feed-lot environment
- □ Targeted growth rates & strategic development programs
- Use of A.I. and estrous synchronization protocols



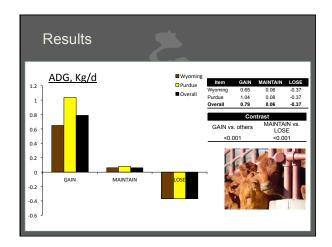


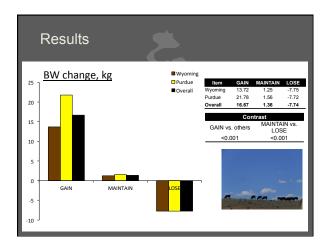
Post AI Management

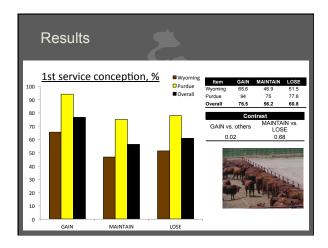
- □ Anecdotal evidence
- Heifers fed in feedlots (high energy diet) cycle really well
 - Conception rates vary tremendously ■ (40%-70%)
- Does Post-Al nutritional management play a role?
 - Green grass????

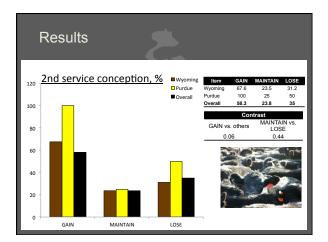

Nutrition and embryo survival

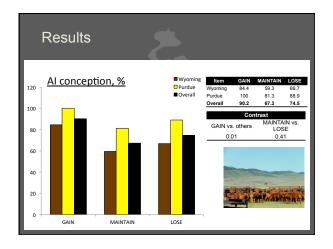
How would a change in nutrition immediately at or following insemination effect embryo survival?

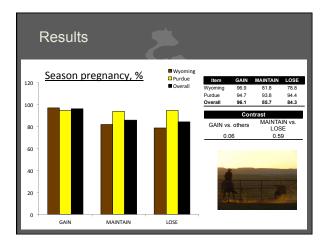

- Direct impact on conceptus
- Toxicity
- Indirect actions to impact conceptus growth
- A. Alteration in uterine function
 - Uterine secretions required for embryo growth
- B. Impede other endocrine functions
 Progesterone production by CL

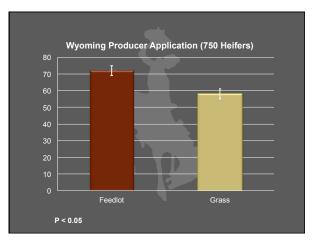

Impact of Post-Al Diet on Al Pregnancy Rates in Heifers

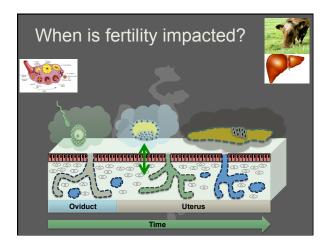

- Hypothesis:
 - Suppressing nutritional plane of heifers immediately after AI will negatively impact AI pregnancy rates
- Objective:
 - To determine the effect that nutritional plane during the first 21 d post-breeding has on BW, BCS, AI conception rates, and ultimately reproductive efficiency of yearling beef heifers
 - R. P. Arlas¹⁷, P. J. Gunn², R. P. Lamanager⁴, and B. L. Lats¹ "Department of Antmal Science, University of Wyconing, Lawar Fahinal Sciences Department, Pundue University, Hest Latigeth

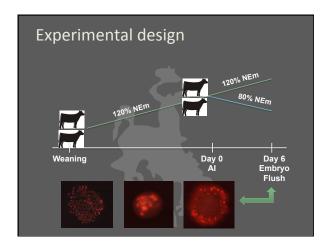


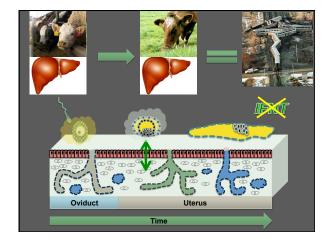


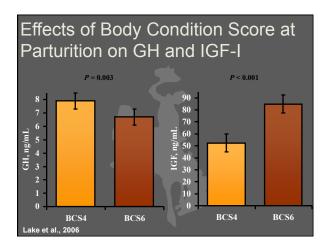












TRT	nª	fect of post-Al % Embryos Recovered	Embryo Stage ^b	Embryo Quality ^c	Accessory Sperm (n)	Dead Cells (n)	Total Cells (n)	% Live Cells
GAIN	29	70.7 ± 7.2 (29/41)	4.5 ± 0.2	2.0 ± 0.2	20.6 ± 4.6	6.8 ± 1.3	65.1 ± 6.1	82.5 ± 4.6
.OSE	27	65.9 ± 7.2 (27/41)	3.8 ± 0.2	2.9 ± 0.2	14.2 ± 3.2	9.6 ± 1.2	48.3 ± 4.5	70.7 ± 5.2
P- value		NS	0.04	0.01	0.56	0.25	0.04	0.10
value Define Stage	of de	` '	; not heifer w 1 = UFO; 9 =	ith the excep expanded h	tion of recover	y rate yst; per IETS		0.1

