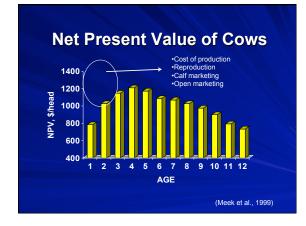
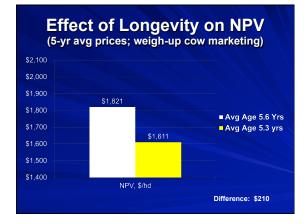


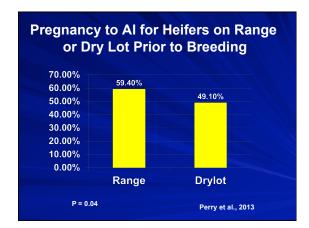
Economic Efficiency of Beef Production				
Milk Class	205 d Milk Avg Ib/d	Weaning \$ Out/\$100 In		
Low	13.8	90.3		
Med	17.6	89.2		
High	20.2	88.1		
*All cows same	e size	Van Oijen et al., 1993		

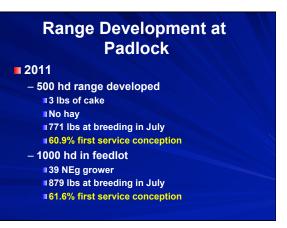

Summary of 1984 Beef Cow Efficiency Forum

- Liberal Feed and/or Low Stress
 Heavier-milking, larger cattle are more efficient
- Restricted Feed or Higher Stress
 Moderate-milking, moderate size are more efficient


Adapted from Ritchie, 1995

	Avg Age 5.6		Avg Age 5.3	
Age	# cows	Preg %	# cows	Preg %
2	100	88	100	75
3	86	88	73	75
4	71	93	51	93
5	62	93	44	93
12	19	85	14	85
13	7	80	5	80




NPV of \$1821/hd	
Cost to Put Heifer in Herd	Profit
\$1,000	\$821/hd
\$1,500	\$321/hd
\$2,000	-\$179/hd

Range Development at Padlock

2012

- 1000 hd range developed
 2 lbs of cake
 No Hay
 865 lbs at breeding in July
 64.5% first service conception
- 1600 hd feedlot developed
 913 lbs at breeding in July
 60.7% first service conception

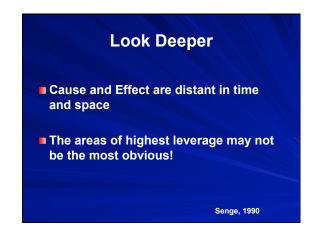
Range Development at Padlock: 2015

tem	Range Developed	Feedlot Developed
Number hd	1093	1026
May Wt (May 3-11), Ibs	662	802
Al Wt (July 23), Ibs	836	902
ADG (May-July), lbs	2.36	1.22
Total Cost (120 d)	\$84	\$144

Fort Keogh Research Cows managed with marginal or adequate supplementation during the winter (8yrs) Progeny heavier at 5 yrs of age from dams on marginal vs adequate nutrition – BCS was better on marginal progeny

Roberts et al., 2011

Effect of Protein Supplementation on Subsequent Heifer Performance Item **No Winter** Winter Protein Protein Adj. 205-d wt, lb 481ª 498^b Age at Puberty 334 339 Pregnant % 80^a 93^b P <u><</u> 0.05 Martin et al., 2007


Cow Efficiency

- Reproduction is a driver in cow efficiency
- Improved reproduction in young cows improves longevity
- Young cow pregnancy may be influenced by management of the cow and the heifer calf

Looking Ahead

- Learned Grazing Behavior
- Systems of Cow Management
- Fetal Programming

Trey Patterson, Padlock Ranch Co., Cow Efficiency

